设函数f(x)=-1⼀3x^3+x^2+(m^2-1)x(x∈R),其中m>0,当m>1时,求曲线y=f(x)在点(1,f(1))处的切线斜率

2025-06-28 16:05:09
推荐回答(1个)
回答1:

f'(x)=-x^2+2x+m^2-1
f'(1)=-1+2+m^2-1=m^2
y=f(x)在点(1,f(1))处的切线斜率为m^2