(1)
a.b=0
(sinθ,-1).(1,cosθ)=0
sinθ-cosθ=0
tanθ=1
g(θ)
=f(sinθ+cosθ) +2√3(cosθ)^2
=(sinθ+cosθ)^2 +2√3(cosθ)^2
=1+ 2sinθ.cosθ +2√3(cosθ)^2
=1+2(1/√2)(1/√2) +2√3(1/√2)^2
=1 + 1 + √3
=2+√3
(2)
g(x)
=1+ 2sinx.cosx +2√3(cosx)^2
=1+ sin2x +√3.( 1+cos2x)
=1+√3 + 2√3.sin(2x+π/3)
max g(x) = 1+3√3
2x+π/3 = 2kπ +π/2
x= kπ +5π/12
集合 = { x| x= kπ +5π/12 , k∈N }
min g(x) = 1-√3
2x+π/3 = 2kπ -π/2
x = kπ -π/12
集合 = { x| x= kπ -π/12 , k∈N }
第一题向量积为0,θ等于四分之派。g(θ)=f(根号2)+2根号3(二分之根号二)的平方=2+根号3。
第二题将g(x)化成单角单次,集合就是极值点加个周期的整数倍。