1)证明:∠ABC=45°,AD⊥BC,则∠BAD=∠ABD=45°,AD=BD;
又∠DBF=∠DAC(皆与∠C互余);∠BDF=∠ADC(=90°)
∴⊿DBF≌ΔDAC(ASA),DF=DC;
又GF∥BC,则∠AGF=∠ABC=45°=∠BAD,FG=AF.
所以:FG+DC=AF+DF=AD.
2)若∠ABC=135°,则∠ABD=45°;AD⊥DC,则∠ABD=∠DAB=45°,
AD=DB,∠DAB=∠ABD=45°;
又∠DFB=∠ACD(皆与∠DAC互余);∠FDB=∠CDA(=90°)
∴⊿DBF≌ΔDAC(AAS),DF=DC;
又FG∥BC,则∠G=∠ABD=45°=∠FAG,FG=FA.
所以FG=FA=AD+DF=AD+DC.
3)解:FG=FA,∠AFG=90°,AG=5√2,则FA=FG=5;DC=3,则DF=3.
AD=FA-DF=2=DB,BC=DC-DB=3-2=1;FC=√(DF^2+DC^2)=3√2.
作BH⊥FG于H,则BH=HG=DF=3;作QT⊥AG于T,QG=3/2,QT=TG=(3√2)/4;BG=AG-AB=5√2-2√2=3√2,BT=BG-TG=(9√2)/4;
∵∠PBQ=∠HBG=45°,则∠PBH=∠QBT;又∠BHP=∠BTQ
∴⊿PBH∽⊿QBT,PH/QT=BH/BT,PH=1.
FP=FG-PH-HG=5-1-3=1.
DC∥FG,FP/BC=FM/MC,1/1=FM/MC,FM=1/2FC=(3√2)/2;
又FQ/BC=FN/NC,3.5/1=FN/NC,3.5/4.5=FN/FC,FN=(7√2)/3.
所以MN=FN-FM=(7√2)/3-(3√2)/3=(4√2)/3.