化简:4. 化简:(2cos눀α-1)⼀{[2tan((π⼀4)- α)]}*{cos대[(π⼀4)- α]}

2025-06-29 06:22:44
推荐回答(1个)
回答1:

由于:
cos^3[π/4-a]
=[cos(π/4-a)]^3
=[cos(π/4)cosa+sin(π/4)sina]^3
=[(√2/2)cosa+(√2/2)sina]^3
=(√2/4)(cosa+sina)^3

tan[(π/4)- a]
=[tan(π/4)-tana]/[1+tan(π/4)tana]
=[1-tana]/[1+tana]
=[cosa-sina]/[cosa+sina]

所以原式
=[2cos^2(a)-1]/{[(2cosa-2sina)/(sina+cosa)]*(√2/4)(cosa+sina)^3}
=[2cos^2(a)-1]/[(√2/2)(cosa-sina)(cosa+sina)^2]
=(√2)[2cos^2(a)-1]/[(cosa-sina)(sina+cosa)(sina+cosa)]
=[√2cos2a]/[(cos^2(a)-sin^2(a))(sina+cosa)]
=[√2cos2a]/[cos2a(sina+cosa)]
=√2/(sina+cosa)