(1/1*2+1/2*3+…+1/n*(n+1)=1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 ...1/n - 1/(n+1)=1-1/(n+1)=n/(n+1)=1/[1+(1/n)]. 应为n趋于无穷大,所以(1/n)趋于0.所以1/[1+(1/n)]趋于1. 所以 lim(1/1*2+1/2*3+…+1/n*(n-1)(n趋于无穷)=1