求这个极限 lim(n→∞)[1⼀1*2+1⼀2*3+……+1⼀n(n-1)]

2025-06-27 00:27:06
推荐回答(1个)
回答1:

(1/1*2+1/2*3+…+1/n*(n+1)=1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 ...1/n - 1/(n+1)=1-1/(n+1)=n/(n+1)=1/[1+(1/n)].
应为n趋于无穷大,所以(1/n)趋于0.所以1/[1+(1/n)]趋于1.
所以
lim(1/1*2+1/2*3+…+1/n*(n-1)(n趋于无穷)=1