已知圆的方程为x눀+y눀+kx+2y+k=0,若过定点p(1,-1)所做的圆切线有两条,则k满足的条件是

2025-06-27 18:54:55
推荐回答(3个)
回答1:

圆:(x+k/2)^2+(y+1)^2=(k/2-1)^2
P在圆外则有2条切线
即P到圆心的距离>半径
(1+2/k)^2>(k/2-1)^2

解出来是k>0

回答2:

解:将圆的方程x²+y²+kx+2y+k=0化为标准方程(x+k/20^2+(y+1)^2=k^2/4+1-k,是以(-k/2,-1)为圆心,根号k^2/4+1-k为半径的园,已知过圆外一点能做园的两条切线,
故只需(-k/2-1)^2>k^2/4+1-k,解得k>0

回答3:

由题可知,P一定在圆外.
所以有1^2+(-1)^2+k-2+k>0
解得k>0