已知(x+2y)⼀x=4,求(x^2+y^2)⼀(x^2-xy-y^2)的值

2025-06-26 10:22:43
推荐回答(2个)
回答1:

(x+2y)/x= 1+2y/x =4
故 y/x = 3/2
(x^2+y^2)/(x^2-xy-y^2)
=[1+(y/x)^2]/[1-y/x -(y/x)]^2
=(1+9/4)(1-3/2-9/4)
=13/4 /(-11/4)
=-13/11

回答2:

(x+2y)/x=4,
x+2y=4x
y=3x/2
把y=3x/2代人(x^2+y^2)/(x^2-xy-y^2)得:
[x²+(3x/2)²]/[x²-x(3x/2)-(3x/2)²]
=(x²+9/4x²)/(x²-3x²/2-9x²/4)
=13x²/4/[(4x²-6x²-9x²)/4]
=13x²/4/(-11x²/4)
=-13/11