已知tanα=2,求(sin(π-α)cos(2π-α)sin(-α+3π⼀2))⼀tan(-α-π)sin(-π-α)的值

2025-06-29 06:27:03
推荐回答(5个)
回答1:

原式=[sinα*cosα*(-cosα)] / tan[-(π+α)*sin[-(π+α)]
=-(sinα*cosα*cosα) / [-tan(π+α)]*[-sin(π+α)]
=-(sinα*cosα*cosα) / (-tanα)*sinα
=(cosα)^2 / 2
=1/ [2*(secα)^2]
=1/ {2*[1 + (tanα)^2]}
=1/ (2*5)
=1/10
如果还有不懂的,可以点击用户名到我网站来提问,我会尽力为你回答的

回答2:

原式=[sinα*cosα*(-cosα)] / tan[-(π+α)*sin[-(π+α)]
=-(sinα*cosα*cosα) / [-tan(π+α)]*[-sin(π+α)]
=-(sinα*cosα*cosα) / (-tanα)*sinα
=(cosα)^2 / 2
=1/ [2*(secα)^2]
=1/ {2*[1 + (tanα)^2]}
=1/ (2*5)
=1/10

回答3:

原式=[sinacosa(-cosa)]/[(-tana)sina]=[1/tana][cos²a]=[1/tana][(cos²a)/(cos²a+sin²a)]=[1/tana][(1)/(1+tan²a)]=1/10。

回答4:

1/9

回答5:

1/5