二重积分被积函数等于1时,可以直接表示区域面积吗

2025-06-27 11:49:27
推荐回答(2个)
回答1:

二重积分被积函数等于1时,可以直接表示区域面积;是被积函数是1的时候。因为二重积分的面积微元dxdy就表示积分区域微元的面积,所以被积函数为1时,直接积分就得到总的面积。

二重积分的本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。当被积函数大于零时,二重积分是柱体的体积;当被积函数小于零时,二重积分是柱体体积负值。

扩展资料:

二重积分的几何意义:

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

二重积分的数值意义:

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

参考资料来源:百度百科-二重积分

回答2:

二重积分 ∫∫ dxdy 表示区域 D 的面积
分成二次积分的二重积分 则不一定。
例如 ∫<下限 4, 上限 2> dx ∫<下限1, 上限 2> dy = -2,
则不表示积分区域 D 的面积