f(1)=n^2,
a1+a2+…+an =n^2,
即Sn =n^2,
所以a1=S1=1,
n≥2时,an =Sn-S(n-1)= n^2-(n-1)^2=2n-1.
∴an =2n-1, n∈N+.
{an}的通项公式 就是n^2
额额
(1)f(1)=a1+a2+a3+……+an=n^2+n=sn
an=sn-s(n-1)=n^2+n-(n-1)^2-(n-1)=2n
a(n-1)=2n-2
an-a(n-1)=2
故an=2n是公差为2的等差数列
(2)f(-1)=-a1+a2-a3+a4-……-a(n-1)+an
=-2+4-6+8-10+……-2(n-1)+2n
=-(2+6+10+……+(2n-2))+(4+8+12+……+2n)
=-(2+2n-2)*(n/4)+(4+2n)*(n/4)
=n
bn=2^f(-1)=2^n
sn=2(1-2^n)/(1-2)=2^(n+1)-2