如图,三角形ABC中,BD平分角ABC交AC于D,CE平分角ACB交AB于E,CE与BD交于F,连接AF并延长交Bc于H,

2025-06-24 12:32:49
推荐回答(1个)
回答1:

(1)∵BD平分∠ABC,CE平分∠ACB,
∴AH平分∠BAC,
∵∠ABC=45°,∠ACB=65°,
∴∠BAC=180°-45°-65°=70°,
∠BAH=½ ∠BAC=35°,
∴∠AHG=∠ABC+∠BAH=45°+35°=80°,
∵FG⊥BC,
∴∠FGH=90°,
∴∠HFG=90°-80°=10°;
∵BD平分∠ABC,CE平分∠ACB,
∴AH平分∠BAC,
∵∠BAC=180°-(∠ABC+∠ACB),
∠BAH=½ ∠BAC=90°-½(∠ABC+∠ACB),
∴∠AHG=∠ABC+∠BAH=∠ABC+90°-½ (∠ABC+∠ACB)=90°+½(∠ABC-∠ACB),
∵FG⊥BC,
∴∠FGH=90°,
∴∠HFG=90°-[90°+½ (∠ABC-∠ACB)]=½∠ACB-½ ∠ABC;

(2)∠BFH=∠CFG,
理由是:∵∠BFH=½ ∠BAC+½ ∠ABC=½ (180°-∠ABC-∠ACB)+½ ∠ABC=90°-
½ ∠ACB;∠CFG=180°-90°-½ ∠ACB=90°-½ ∠ACB,
∴∠BFH=∠CFG

小学生数学团

望采纳