(1)∵BD平分∠ABC,CE平分∠ACB,
∴AH平分∠BAC,
∵∠ABC=45°,∠ACB=65°,
∴∠BAC=180°-45°-65°=70°,
∠BAH=½ ∠BAC=35°,
∴∠AHG=∠ABC+∠BAH=45°+35°=80°,
∵FG⊥BC,
∴∠FGH=90°,
∴∠HFG=90°-80°=10°;
∵BD平分∠ABC,CE平分∠ACB,
∴AH平分∠BAC,
∵∠BAC=180°-(∠ABC+∠ACB),
∠BAH=½ ∠BAC=90°-½(∠ABC+∠ACB),
∴∠AHG=∠ABC+∠BAH=∠ABC+90°-½ (∠ABC+∠ACB)=90°+½(∠ABC-∠ACB),
∵FG⊥BC,
∴∠FGH=90°,
∴∠HFG=90°-[90°+½ (∠ABC-∠ACB)]=½∠ACB-½ ∠ABC;
(2)∠BFH=∠CFG,
理由是:∵∠BFH=½ ∠BAC+½ ∠ABC=½ (180°-∠ABC-∠ACB)+½ ∠ABC=90°-
½ ∠ACB;∠CFG=180°-90°-½ ∠ACB=90°-½ ∠ACB,
∴∠BFH=∠CFG
小学生数学团
望采纳