解:
设{an}公差为d1,{bn}公差为d2
Sn/Tn=[na1+n(n-1)d1/2]/[nb1+n(n-1)d2/2]
=[d1n+(2a1-d1)]/[d2n+(2b1-d2)]
又Sn/Tn=(2n+5)/(n+3)
令d1=2t,解得a1=3.5t,b1=2t,d2=t
am/bn=[a1+(m-1)d1]/[b1+(n-1)d2]
=[3.5t+(m-1)·2t]/[2t+(n-1)·t]
=(4m+3)/(2n+2)
令m=5,n=7,得
a5/b7=(4·5+3)/(2·7+2)=23/16