解:如图(1)所示,由射影定理知AD2=BD?DC,AB2=BD?BC,AC2=BC?DC,
∴
=1 AD2
1 BD?DC
=
=BC2
BD?BC?DC?BC
.BC2
AB2?AC2
又BC2=AB2+AC2,
∴
=1 AD2
=AB2+AC2
AB2?AC2
+1 AB2
.1 AC2
所以
=1 AD2
+1 AB2
.1 AC2
类比AB⊥AC,AD⊥BC猜想:
四面体A-BCD中,AB、AC、AD两两垂直,
AE⊥平面BCD,则
=1 AE2
+1 AB2
+1 AC2
.1 AD2
如图(2),连接BE交CD于F,
连接AF.∵AB⊥AC,AB⊥AD,
∴AB⊥平面ACD.
而AF?平面ACD,∴AB⊥AF.
在Rt△ABF中,AE⊥BF,
∴
=1 AE2
+1 AB2
.1 AF2
在Rt△ACD中,AF⊥CD,
∴