解:(Ⅰ)∵a1=1,3anan-1+an-an-1=0(n≥2,n∈N+),∴3+
1
an-1
-
1
an
=0,
即
1
an
-
1
an-1
=3,故数列{
1
an
}是以1为首项、以3为公差的等差数列.
(Ⅱ)由(Ⅰ)知,
1
an
=1+(n-1)3=3n-2,
∴an
=
1
3n-2
.
(Ⅲ)由于Cn=
3an
3n+1
=
3
(3n+1 )(3n-2)
=
1
3n-2
-
1
3n+1
,
∴数列{Cn}的前n项和Tn
=(1-
1
4
)+(
1
4
-
1
7
)+(
1
7
-
1
10
)+…+(
1
3n-2
-
1
3n+1
)
=1-
1
3n+1
=
3n
3n+1
.