如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.当点P

2025-06-29 05:51:03
推荐回答(1个)
回答1:

直线OP与⊙A相交.
理由如下:
作AD⊥OP于D,如图所示:
可得∠ADP=90°,
又∠PBO=90°,
∴∠ADP=∠PBO,又∠APD=∠OPB,
∴△PAD∽△POB,
又PA=PB-AB=12-4=8,OB=3,
在直角△OBP中,OB=3,BP=12,
根据勾股定理得:OP=

BO2+BP2
=
153

PA
OP
=
AD
OB
,即
8
153
=
AD
3

解得:AD=
24
153
153

24
153
153
≈1.9<2=r,
∴直线OP与⊙A相交.
故选:A.