微分方程y’+ycosx=0通解为?

2025-06-27 01:04:50
推荐回答(1个)
回答1:

∵y’+ycosx=0 ==>dy/dx+ycosx=0
==>dy/y=-cosxdx
==>ln│y│=-sinx+ln│C│ (C是积分常数)
==>y=Ce^(-sinx)
∴原方程的通解是 y=Ce^(-sinx) (C是积分常数).