(1)AF=DF,
理由如下:
∵AD平分∠BAC,
∴∠BAD=∠CAD.
又∵∠B=∠CAE,
∴∠BAD+∠B=∠CAD+∠CAE.
即∠ADE=∠DAE,
∴AE=DE,
∵DE是直径,
∴EF⊥AD,
∴AF=DF;
(2)如图:连接DM,DM交EF于G,作射线AG交DE于H,此时AH是高.
(3)由勾股定理得:AE=DE=5,
∵∠ADH=∠EDF,∠AHD=∠DFE=90°,
∴△ADH∽△EDF,
∴
=DH DF
,AD DE
∴
=DH 3
,6 5
∴DH=3.6.