∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由折叠的性质,得:AF=AD=8,∠AFE=∠D=90°,∴∠AFB+∠EFC=∠EFC+∠CEF=90°,∴∠CEF=∠AFB,在Rt△ABF中,sin∠AFB= AB AF = 4 8 = 1 2 ,∴∠AFB=30°,∴∠CEF=30°.故选B.