(1):∵f(x)与y=f(-x)的图象关于直线x=0对称,函数y=f(x-1)与y=f(1-x)的图象可以由f(x)与y=f(-x)的图象向右移了一个单位而得到,从而可得函数y=f(x-1)与y=f(1-x)的图象关于直线x=1对称;故(1)错误 (2)若f(1-x)=f(x-1),令t=1-x,有f(t)=f(-t),则函数y=f(x)的图象关于直线x=0对称;故(2)错误 (3)若f(1+x)=f(x-1),则f(x+2)=f[(x+1)+1]=f(x),函数y=f(x)是以2为周期的周期函数;故(3)正确 (4)若f(1-x)=-f(x-1),则可得f(-t)=-f(t),即函数f(x)为奇函数,从而可得函数y=f(x)的图象关于点(0,0)对称.故(4)正确 故答案为(3)(4) |