tanx=2(2/3)sin^2(x)+(1/4)cos^2(x)=[(2/3)sin^2(x)+(1/4)cos^2(x)]/1=[(2/3)sin^2(x)+(1/4)cos^2(x)]/[sin^2(x)+cos^2(x)]分子分母同除以cos^2(x)得:原式=[(2/3)tan^2(x)+(1/4)]/[tan^2(x)+1]=[(2/3)*4+(1/4)]/[4+1]=[(8/3)+(1/4)]/5=7/12