证明:①n=1时,左边=2,右边=2,等式成立;②假设n=k时,结论成立,即:(k+1)+(k+2)+…+(k+k)= k(3k+1) 2 则n=k+1时,等式左边=(k+2)+(k+3)+…+(k+k+1)+(k+1+k+1)= k(3k+1) 2 +3k+2= (k+1)(3k+4) 2 故n=k+1时,等式成立由①②可知:(n+1)+(n+2)+…+(n+n)= n(3n+1) 2 (n∈N*)成立