(1)∵f'(x)=cosx-sinx,
∴f'(x)=cosx-sinx=-
sin(x+
2
),π 4
F(x)=cos2x-sin2x+1+2sinxcosx=1+sin2x+cos2x=1+
sin(2x+
2
),π 4
所以F(x)的最小正周期为T=π
(2)由于f(x)=2f′(x),则sinx+cosx=2(cosx-sinx)
故3sinx=cosx
即tanx=
1 3
原式=
=2sin2x+cos2x cos2x+sinx?cosx
=1+2tan2x 1+tanx
.11 12