证明:设BC中点为N,连MN交CE于P,再连MC,则AM=BN,MD=NC,又∵BC=2AB,∴四边形ABNM、四边形MNCD均是菱形,∴MN∥AB,∴∠AEM=∠EMN,∵CE⊥AB,∴MN⊥CE,又∵AM=MD,MN∥AB.∴P点为EC的中点,∴MP垂直平分EC,∴∠EMN=∠NMC,又∵四边形MNCD是菱形,∴∠NMC=∠CMD,∴∠EMD=3∠EMN=3∠AEM.