若椭圆x눀⼀16+y눀⼀4=1内,通过点M(1,1),且被这点平分的弦所在的直线方程为

2025-06-26 06:38:28
推荐回答(1个)
回答1:

设(x1,y1),(x2,y2)是弦的端点,则
x1²/16+y1²/4=1
x2²/16+y2²/4=1
两个方程相减得:(x1+x2)(x1-x2)/16+(y1+y2)(y1-y2)/4=0
∵(1,1)是中点,∴x1+x2=2
y1+y2=2
代人上式得:2(x1-x2)/16+2(y1-y2)/4=0
解得:(y1-y2)/(x1-x2)=-1/4
∴弦所在的直线方程是:y-1=(-1/4)(x-1),即:x+4y-5=0