(1)设等比数列{an}的公比为q,∵a1=2,a4=16,∴2q3=16,解得q=2.
∴an=2×2n?1=2n.
(2)设等差数列{bn}的公差为d,
∵b2=a2,b9=a5,
∴
,解得
b1+d=22
b1+8d=25
.
b1=0 d=4
∴bn=0+(n-1)×4=4n-4.
(3)∵an?bn=(4n?4)?2n=(n-1)?2n+2.
∴Sn=0+24+2?25+3?26+…+(n-1)?2n+2,
2Sn=25+2?26+…+(n?2)?2n+2+(n-1)?2n+3,
∴-Sn=24+25+…+2n+2-(n-1)?2n+3=
?23?(n?1)?2n+3=2n+3-24-(n-1)?2n+3=(2-n)?2n+3-16.
23(2n?1) 2?1
∴Sn=16+(n?2)?2n+3.