(1)证明:由折叠的性质可得∠CEF=∠AEF,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠CEF=∠EFA,
∴∠AEF=∠EFA,
∴AE=AF;
(2)证明:∵四边形ABCD是平行四边形,
∴AB=CD,∠BAD=∠BCD,
又根据题意得:AG=CD,∠EAG=∠BCD,
∴AB=AG,∠BAD=∠EAG,
∴∠BAE=∠GAF,
又∵AB∥CD,AE∥GF,AD∥BC,
∴∠BEA=∠EAF=∠GFA,
在△ABE与△AGF中,
,
∠BEA=∠GFA ∠BAE=∠GAF AB=AG
∴△ABE≌△AGF(AAS).