解答:证明:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°∴∠ABF=90°.∵AE⊥AF,∴∠FAE=90°.∴∠FAE=∠BAD,∴∠FAE-∠BAE=∠BAD-∠BAE,即∠BAF=∠DAE.∵在△BAF和△DAE中, ∠BAF=∠DAE BA=DA ∠ABF=∠ADE ,∴△BAF≌△DAE(ASA),∴AF=AE.∴△AEF是等腰直角三角形.