高一数学求【详】解!

2025-06-29 00:33:10
推荐回答(2个)
回答1:

第一问
f(x)-x的对称轴是2,则b=-3
f(x)=x的平方-3x+4,就是解方程
(x-1)^2-3(x-1)+4=x+1
第二问

(2/x+3/y)(2x+y)=3(2x+y),
左边用柯西不等式

回答2:

  1. f(x)=x,即x^2+(b-1)x+c=0,而只有一个解2,所以(x-2)^2 =x^2-4x+4等价于 x^2+(b-1)x+c

    b=-3,c=4

    f(x-1)=x+1,即(x-1)^2-3(x-1)+4=x+1,即(x-1)^2-4(x-1)+3=0,得到x-1=1或者x-1=3,即

    B={2,4}

  2. 是不是应该有x,y>0的条件呀?

    a=根号(2/x),b=根号(3/y),c=根号(2x),d根号(y)

    a^2+b^2=2/x+3/y

    c^2+d^2=2x+y

    ac+bd=根号(2/x*2x)+根号(3/y*y)=2+根号3

    代入柯西不等式,得到(2/x+3/y)(2x+y)>=(2+根号3)^2

    即2x+y>=[(2+根号3)^2]/3