已知,a/(a^2+a+1) = 1/6 , 可得:(a^2+a+1)/a = 6 , 即有:a+1+1/a = 6 , 可得:a+1/a = 5 , 所以,(a+1/a)^2 = 25 , 即有:a^2+2+1/a^2 = 25 , 可得:(a^4+a^2+1)/a^2 = a^2+1+1/a^2 = 24 , 则有:a^2/(a^4+a^2+1) = 1/24 .