如图,△ABC内,∠BAC=60°,∠ACB=40°,P,Q分别在BC,CA上,并且AP,BQ分别是∠BAC,∠ABC的平分线,

2025-06-29 03:40:02
推荐回答(1个)
回答1:

解答:证明:延长AB到D,使BD=BP,连接PD.则∠D=∠5.
∵AP,BQ分别是∠BAC,∠ABC的平分线,∠BAC=60°,∠ACB=40°,
∴∠1=∠2=30°,∠ABC=180°-60°-40°=80°,
∠3=∠4=40°=∠C.
∴QB=QC,
又∠D+∠5=∠3+∠4=80°,
∴∠D=40°.
在△APD与△APC中,
AP=AP,
∠1=∠2,∠D=∠C=40°
∴△APD≌△APC(AAS),
∴AD=AC.
即AB+BD=AQ+QC,
∴AB+BP=BQ+AQ.