∵O是△ABC的内角的平分线交点,∴∠OBC= 1 2 ∠ABC,∠OCB= 1 2 ∠ACB,∴∠OBC+∠OCB= 1 2 ∠ABC+ 1 2 ∠ACB= 1 2 (∠ABC+∠ACB)= 1 2 (180°-x).∵∠BOC=180°-(∠OBC+∠OCB),∴∠BOC=180°- 1 2 (180-x),∴y=90°+ x 2 (0<x<180).