y=(X²+1)/(2x+2)=((X+1)²-2x)/(2(x+1))令x+1=t , 0<x<1 1<x+1<2 1<t<2y=(t²-2t+2)/(2t)=0.5t-1+(1/t)=0.5t+(1/t)-1 0.5t+(1/t)>=2*根号(0.5t*(1/t))=根号2y最小值为(根号2)-1
设t=x+1,0y=[(t-1)^+1]/(2t)=(t^-2t+2)/(2t)=(1/2)(t+2/t-2)>=(1/2)(2√2-2)=√2-1,当t=2/t,即t=√2时取等号,∴y的最小值=√2-1.