求与圆(x-3) 2 +y 2 =1及(x+3) 2 +y 2 =9都外切的动圆圆心的轨迹方程

求与圆(x-3) 2 +y 2 =1及(x+3) 2 +y 2 =9都外切的动圆圆心的轨迹方程.
2025-06-28 15:37:45
推荐回答(1个)
回答1:

设动圆的圆心为P,半径为r,
而圆(x+3) 2 +y 2 =9的圆心为M 1 (-3,0),半径为3;
圆(x-3) 2 +y 2 =1的圆心为M 2 (3,0),半径为1.
依题意得|PM 1 |=3+r,|PM 2 |=1+r,
则|PM 1 |-|PM 2 |=(3+r)-(1+r)=2<|M 1 M 2 |,
所以点P的轨迹是双曲线的右支.
且:a=1,c=3,b 2 =8
其方程是:
x 2 -
y 2
8
=1(x>0)