若tanα=-1⼀3,tan(β-(π⼀4))=-1⼀3,则tan(α+β)=

2025-06-27 10:33:10
推荐回答(1个)
回答1:

tanα=-1/3 tan(β-π/4)=-1/3
tan(α+β-π/4)=[tanα+tan(β-π/4)]/[1-tanα·tan(β-π/4)]
=[(-1/3)+(-1/3)]/[1-(-1/3)(-1/3)]
=-3/4
tan(α+β)
=tan[(α+β-π/4)+π/4]
=[tan(α+β-π/4)+tan(π/4)]/[1-tan(α+β-π/4)·tan(π/4)]
=[(-3/4)+1]/[1-(-3/4)×1]
=1/7