求不定积分( 3x^5-12x^3-7)/(x^2+2x)

急、
2025-06-28 11:34:05
推荐回答(2个)
回答1:

分子次数比分母高,则先用多项式除法
=================================
3 -6 0 0
1 2 0/------------------------
3 0 -12 0 0 -7
3 6 0
------------------------
-6 -12 0
-6 -12 0
------------------------
0 0 0 0 -7
==================================
所以可以得知
3x^5-12x^3-7=(3x^3-6x^2)(x^2+2x)-7
所以原分式变为
[3x^3-6x^2]-7/(x^2+2x)
==================================
最后一项分母拆项
所求积分即为
∫(3x^3-6x^2)dx - 7∫dx/[x(x+2)]
=∫(3x^3-6x^2)dx - (7/2)∫[1/x-1/(x+2)]dx
==================================
积分
=3x^4/4-2x^3-7(ln x-ln(x+2))+C

回答2:

郭敦顒回答:
∫[(3x^5-12x^3-7)/(x^2+2x)]dx=?
(3x^5-12x^3-7)/(x^2+2x)=3x³-6x²-7/(x²+2x)
∴∫[(3x^5-12x^3-7)/(x^2+2x)]dx=∫3x³dx-∫6x²dx-∫[7/(x²+2x)]dx
=(3/4)x^4-2x³-(7/2)ln|x/(x+2)|+C