先解出F(X)的导函数F‘(X)=6X^2-6(a+1)X+6a,由于在X=3处取得极值,因此将X=3带入导函数中F‘(X)=0,即6X^2-6(a+1)X+6a=0,解得a=3!
f'(x)=-6(a+1)x+6a则f'(3)=-6(a+1)*3+6a又f(x)在x=3处取得极值则f'(3)=0解得:a=-1
f‘(x)=6x2-6(a+1)x+6a在x=3处取得极值∴f‘(3)=0解得a=3