∫x(1-x^2)^5dx=∫(1-x^2)^5xdx=1/2∫(1-x^2)^52xdx=1/2∫(1-x^2)^5dx^2=-1/2∫(1-x^2)^5d(1-x^2)=-1/2*1/6 *(1-x^2)^6+C=-(x^2-1)^6 /12+C
∫x(1-x^2)^5dx=(1/2)*∫(1-x^2)^5d(x^2)=(-1/2)*∫(1-x^2)^5d(1-x^2)=(-1/12)*[(1-x^2)^6]+C(C为任意常数)