A为第二象限角,sinA=3/5,
所以cos^2A =1-sin^2A ,所以 cosA=-4/5,
sin(37π/6-2A)=sin(6π+(π/6-2A))
sin(π/6-2A)=sinπ/6*cos2A-cosπ/6*sin2A
=(1/2)*cos2A-(√3/2)sin2A
=(1/2)*(cos^2A-sin^2A)-(√3/2)2sinA*cosA
=(1/2)*【(16/25)-(9/25)】+√3*(3/5)*(4/5)
=整理就可以了
注:^2表示平方米
sinA=3/5又在第二象限,则A可以为2/3π
而37π/6=π/6
原式就等于sin(π/6-4π/3)=sin(-7π/6)=sin(-π/6)=-sin(π/6)=-1/2