(n1+n2+…+nm)/m=p+r/m
n1+n2+…+nm=mp+r
r=n1+n2+…+nm-mp
(an1+an2+…+anm)/m=(ap)+(r/m)*d
an1+an2+…+anm=m(ap)+rd
an1+an2+…+anm=m(ap)+(n1+n2+…+nm-mp)d
如果m=n,则
a1+a2+…+an=n(ap)+(1+2+…+n-np)d
a1+a2+…+an=n(ap)+[(n+1)*n/2-np]d
a1+a2+…+an=n(ap)+nd(n+1-2p)/2
所以数列|an|是以d为公差的等差数列.