由带lagrange余项的Taylor展式,存在a设M=maxf''(x) m=minf''(x) 则 (a-b)M/2=即 m=<[f''(e)(a-c) - f''(f)(b-c)]/(a-b)<=M 由导函数的介值性(达布定理)知存在ξ属于(a,b)使得f''(ξ)=[f''(e)(a-c) - f''(f)(b-c)]/(a-b) 所以[f(a)-f(c)]/(a-c) - [f(b)-f(c)]/(b-c)=(a-b)f''(ξ)/2整理后可得要证的式子