∵a(n+1)=s(n)+2∴2a(n+1)=a(n+1)+s(n)+2=s(n+1)+2∵a(n+2)=s(n+1)+2∴a(n+2)=2a(n+1)即a(n+2)/a(n+1)=2数列{an}为等比数列,q=2∴an=a1*q^(n-1)=2^n
an+1=sn+2a_(n+1)=s_n+2a_(n+1)-a_n=s_n-s_{n-1)=a_na_(n+1)=2a_n为等比数列a_n=2*2^{n-1}=2^n