⑴因为S1,S2,S4成等比数列,所以S2²=S1×S4
即(a1+a2)²=a1(a1+a2+a3+a4)=a1(a1+a2+a1+2d+a2+2d)=2a1²+2a1a2+4a1d
即a1²+2a1a2+a2²=2a1²+2a1a2+4a1d
解得a2²=a1²+4a1d
即﹙a1+d﹚²=a1²+4a1d
a1²+2a1d+d²=a1²+4a1d
d²=2a1d
所以d=2a1
a2/a1=﹙a1+d﹚/a1=3a1/a1=3
⑵ a1+4d=9
S2²=S1×S4 解得 d=2a1
所以a1=1
所以d=2
所以an=1+(n-1)2=2n-1
Sn=n²