1、已知如图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1) 在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)在图2中,若∠D=400,∠B=360,试求∠P的度数;
(4)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结论即可)
要图给我说邮箱~
发给你
2.(1)如图①,在正方形ABCD中,E、F分别是BC、CD上的点且∠EAF=45°.猜测线段EF、BE、FD三者存在哪种数量关系?直接写出结论.(不用证明)结论: .
(2)如图②,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是BC、CD上的点,且∠EAF是∠BAD的一半.(1)中猜测的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
3、把两个全等的直角三角板的斜边重合,组成一个四边形ABCD以D为顶点作∠MDN,交边AC、BC于M、N.
(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;
(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;
(3)如图③,在(2)的结论下,若将M、N分改在CA、BC的延长上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系,证明)
4.△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,把一个三角板的直角顶点放在点D处,将三角板绕点D旋转且使两条直角边分别交AB、AC于E、F.
(1)如图1,观察旋转过程,猜想线段AF与BE的数量关系并证明你的结论;
(2)如图2,连接EF,试探索线段BE、EF、FC之间的数量关系,直接写出你的结论,证明
5.如图所示:AM∥DN,AE、DE分别平分∠MAD和∠AND,并交于E点.过点E的直线分别交AM、DN于B、C.
(1)如图,当点B、C分别位于点AD的同侧时,猜想AD、AB、CD之间的存在的数量关系,证明你的猜想.
(2)当点B、C分别位于点AD的同侧时,若AB=4,CD=9,AE=5,求梯形ABCD的面积。
(3)若点B、C分别位于点AD的两侧时,试写出AD、AB、CD之间的关系,并选择一个写出证明过程.
7、已知两个全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90o,E为AB中点,△DEF可绕顶点E旋转,线段DE,EF分别交线段CA,CB(或它们所在直线)于M、N.
(1)如图1,当线段EF经过△ABC 的顶点C时,点N与点C重合,线段DE交AC于M,求证:AM=MC;
(2)如图2,当线段EF与线段BC边交于N点,线段DE与线段AC交于M点,连MN,EC,请探究AM,MN,CN之间的等量关系,并说明理由;
A
图1
B
E
F
D
M
C(N)
A
图2
B
C
E
F
D
M
N
A
图3
B
C
E
F
D
N
M
8.如图:在△ABC中,BC=2AB=4,AD为边BC上的中线,E、F分别为BC、AB上的动点,且CE=BF,EF与AD交于点G.FH⊥AG于H
(1)①如图1,当∠B=90°时,FGEG;GH=.
②如图2,当∠B=60°时,FGEG;GH=.
③如图3,当∠B=α时,FGEG;GH=.
请你先填上空,再从以上三个命题中任选择一个进行证明
(2)如图4,若(1)中的点E、F分别在BC、AB的延长线上,试问(1)中的结论是否仍然成立.若成立,请证明你的结论;若不成立,请说明理由.