解:
∵∠BAC+∠B+∠ACB=180, ∠BAC=80, ∠B=40
∴∠ACB=180-(∠BAC+∠B)=180-(80+40)=60°
∵CE平分∠ACB
∴∠ACE=∠BCE=∠ACB/2=60/2=30
∵∠AEC+∠BAC+∠ACE=180
∴∠AEC=180-(∠BAC+∠ACE)=180-(80+30)=70°
∵AD⊥BC
∴∠ADC=90
∵∠DFC+∠ADC+∠BCE=180
∴∠DFC=180-(∠ADC+∠BCE)=180-(90+30)=60
∵∠AFE与∠DFC为对顶角
∴∠AFE=∠DFC=60°