证明:
过点A作AE⊥BC于E,
∵AB=AC,
∴BE=CE(三线合一),
∵∠AED=90°,
∴AD^2=AE^2+DE^2,
AB^2=AC^2=AE^2+CE^2,
∴AD^2-AB^2=DE^2-CE^2
=(DE+CE)×(DE-CE)
=(DE+BE)×DC
=BD×DC