1⼀(a^2cos^x+b^2sin^x)的不定积分

2025-06-27 17:26:30
推荐回答(1个)
回答1:

∫dx/(a^2sin^2x+b^2cos^2x)
=∫dx/a^2*cos^2x*(tan^2x+b^2/a^2)
=1/a^2∫sec^2xdx/(tan^2x+b^2/a^2)
=1/a^2∫d(tanx)/(tan^2x+(b/a)^2)
=1/a^2*a/b*arctan(ax/b)+C
=(1/ab)*arctan(ax/b)+C

希望对你有所帮助 还望采纳~~