已知a>0,b>0,a+b=3,那么:
2/a
+
1/b
=2(a+b)/(3a)
+
(a+b)/(3b)
=(2/3)
+
2b/(3a)
+
a/(3b)
+
1/3
=1+
(1/3)*(2b/a
+
a/b)
由均值定理有:2b/a
+
a/b≥2√[(2b/a)*(a/b)]=2√2
(当且仅当2b/a=a/b即a=√2*b时等式成立)
所以当a=√2*b时,2/a
+
1/b有最小值为1+
(1/3)*2√2=1+
(2√2)/3
解答:
先求3*(2/a
+
1/b)
则
3*(2/a
+
1/b)
=
(a+b)*(2/a
+
1/b)
=2+2b/a+a/b+1
=3+2b/a+a/b
≥3+2√2
当且仅当2b/a=a/b时等号成立
∴
3(2/a
+
1/b)的最小值是3+2√2
∴
2/a
+
1/b的最小值是(3+2√2)/3