∫∫√(a²-x²-y²)dσ=∫∫ r√(a²-r²) drdθ=∫[0→2π]dθ∫[0→a] r√(a²-r²) dr=2π∫[0→a] r√(a²-r²) dr=π∫[0→a] √(a²-r²) d(r²)=-(2π/3)(a²-r²)^(3/2) |[0→a]=2πa³/3则2πa³/3=2π因此a=3^(1/3)
解:用极坐标,2π=∫∫√a^2-x^2-y^2dδ=2π∫(0,a)r√(a^2-r^2)dr=π2a^3/3,a=3^(1/3)