(1)由an+2=p?
得an+12 an
=p?an+2 an+1
…(1分)an+1 an
令cn=
,则c1=a,cn+1=pcn.an+1 an
∵a≠0,
∴c1≠0,故
=p(非零常数),cn+1 cn
∴数列{
}是等比数列,…(3分)an+1 an
(2)∵数列{cn}是首项为a,公比为p的等比数列,
∴cn=c1?pn-1=a?pn-1,
即
=apn-1. …(4分)an+1 an
当n≥2时,an=
?an an?1
…an?1 an?2
?a1=(apn-2)×(apn-3)×…×(ap0)×1=an-1pa2 a1
,…(6分)
n2?3n+2 2
∵a1满足上式,
∴an=an-1p
,n∈N*. …(7分)
n2?3n+2 2
(3)∵
=an+2 an
?an+2 an+1
=(apn)×(a?pn-1)=a2p2n-1,an+1 an
∴当a=1时,bn=
=np2n-1. …(8分)nan+2
an
∴Sn=1×p1+2×p3+…+n×p2n-1,①
p2Sn=1×p3+…+(n-1)p2n-1+n×p2n+1②
∴当p2≠1,即p≠±1时,①-②得:(1-p2)Sn=p1+p3+…+p2n-1-np2n+1,
∴Sn=
-p(1?p2n) (1?p2)2
,p≠±1. …(11分)np2n+1
1?p2
而当p=1时,Sn=1+2+…+n=
,…(12分)n(n+1) 2
当p=-1时,Sn=(-1)+(-2)+…+(-n)=-
.…(13分)n(n+1) 2
综上所述,Sn=
…(14分)
,p=1n(n+1) 2 ?
,p=?1n(n+1) 2
?p(1?p2n) (1?p2)2
,p≠±1np2n+1
1?p2