已知:如图,在直角梯形ABCD中,AD ∥ BC,AB⊥AD,BC=CD,BE⊥CD,垂足为点E,点F在BD 上,连接AF、EF

2025-06-29 03:40:09
推荐回答(1个)
回答1:

证明:(1)∵BC=CD,
∴∠CDB=∠CBD,
∵AD ∥ BC,
∴∠ADB=∠CBD,
∴∠ADB=∠CDB,
又∵AB⊥AD,BE⊥CD,
∴∠BAD=∠BED=90°,
于是,在△ABD和△EBD中,
∵∠ADB=∠CDB,∠BAD=∠BED,BD=BD,
∴△ABD≌△EBD,
∴AD=ED.

(2)∵AF ∥ CD,∴∠AFD=∠EDF,
∴∠AFD=∠ADF,即得AF=AD,
又∵AD=ED,
∴AF=DE,于是,由AF ∥ DE,AF=DE得四边形ADEF是平行四边形,
又∵AD=ED,
∴四边形ADEF是菱形.